

CORPORATE OFFICE
Plot 122, Sector 4, IMT Manesar,
Una, Gurugram, 122050
MANUFACTURING UNIT
Village: Dhamandri, Tehsil & District:
Himachal Pradesh -174303 (India)

sales.corp@coslightin vrla@coslightin

www.coslight.in

2V
ADVANCED
VRLA
BATTERIES

vrla@coslight.in | www.coslight.in

AGM VRLA BATTERY SERIES

Coslight is the world's leading manufacturer of latest generation of batteries for industrial applications.

Coslight products are widely recognized to be reliable, safe, cost-efficient, longlife and environment friendly.

APPLICATIONS:

KEY FEATURES:

- Thin plated pure lead (TPPL) provides a large reactive surface area and low internal resistance.
- · High energy density and cycling capability.
- No Acidic Fumes propagating green environment.
- An exceptional deep discharge recovery performance.
- Extra durability and deep cycle ability for heavy demand applications.
- Low self-discharge characteristics.
- Thin plated pure lead (TPPL) batteries can be recharged within a short period of time.
- · No service cost, just fit and forget

SIGNIFICANT BENEFITS:

- · Superb charge acceptance for fast charge recharges capability.
- · More energy and power.
- Exceptional cycling performance in both float and fast charge.
- · Market-leading shelf life due to low rate ofself-discharge.
- · Resilient to hot and harsh environments.

CONSTRUCTION:

- Special Proprietary Alloy used for the positive and negative grids and Highly Pure Lead used for the lead oxide to make the plates.
- Superior quality, low resistance micro porous glassmat separators.
- High grade dilute sulphuric acid absorbed into separator material for reduced maintenance.
- Container and cover in flame retardant UL94-V0 material, highly resistant to shock and vibration.
- Front terminal and end terminal of batteries use brass inserts.
- Self-regulating one-way pressure relief valves prevent air ingress.
- Flame arrestor fitted into each cell for increased operational safety.

STANDARDS:

- Complies with the JIS 8702, IS 15549: 2005 and IEC 60896: 21 & 22.
- The management systems governing the manufacture of this product are ISO 9001:2015, ISO 14001:2015 and ISO 45001:2018 certified.

INSTALLATION & OPERATION:

- Space efficient footprint.
- Valve Regulated Lead Acid (VRLA) design reduces maintenance requirements.
- Greater than 10 year life expectancy in float service at 77° F (25 $^{\circ}$ C).
- TPPL technology provides increased active material surface area which yields increased energy density.
- Operating temperature: Discharge - -15°C- 50°C. Charge - 0°C- 40°C. Storage - -15°C- 40°C.

GENERAL SPECIFICATION:

Model	Nominal	Nominal		Dimensio	n			Plastic
Model	Capacity (in AH) @27°C	Voltage (V)	L (mm)±3	W (mm)±3	H (mm)±3	Approximate Weight (in kgs) ±3%	Terminal type	
GFM-100	100	2	80.7	173.0	268.0	7.2	M6	ABS
GFM-120	120	2	80.7	173.0	268.0	7.9	M6	ABS
GFM-150	150	2	84.0	173.0	268.0	8.5	M6	ABS
GFM-180	180	2	92.3	177.6	372.0	11.7	M8	ABS
GFM-200	200	2	92.3	177.6	372.0	13.1	M8	ABS
GFM-300	300	2	135.0	178.5	372.0	18.3	M8	ABS
GFM-400	400	2	164.0	179.5	373.0	24.1	M8	ABS
GFM-500	500	2	206.7	180.0	373.0	29.5	M8	ABS
GFM-600	600	2	235.5	180.5	373.0	35.0	M8	ABS
GFM-1000	1000	2	419.6	181.6	382.0	60.0	M8	ABS

CONSTANT CURRENT DISCHARGE (AMPERE AT 25°C)

End Voltage	Minute					Hour							
Lilu Voltage	5	10	15	30	40	50	1	2	3	4	5	8	10
1.85V	1.86	1.60	1.05	0.71	0.61	0.54	0.50	0.32	0.24	0.19	0.16	0.11	0.09
1.054	С	С	С	С	С	С	С	С	С	С	С	С	С
4.007	2	1.68	1.26	0.79	0.67	0.57	0.52	0.32	0.25	0.20	0.16	0.12	0.10
1.80V	С	С	С	С	С	С	С	С	С	С	С	С	С
	2.2	1.78	1.40	0.81	0.69	0.6	0.55	0.33	0.26	0.21	0.17	0.12	0.10
1.75V	С	С	С	С	С	С	С	С	С	С	С	С	С